
Binghamton

University

CS-220

Spring 2016

User Defined Types in C
The C Programming Language: Chapter 6



Binghamton

University

CS-220

Spring 2016

Types in C

• Built-in types: char, float, int, double, short, …

• Modified types
• Arrays: char ____[5], int ______[3][7], …
• Pointers: int *___, char *____, …

• User Named Type Extensions
• Structures 
• Unions 
• Enumerations

• User Defined Types - typedef



Binghamton

University

CS-220

Spring 2016

User Named Type Extensions

• Type consists of <keyword> <tag>
• e.g. “struct llnode” or “union data” or “enum colors”

• Type must be defined: <type> { <definition> } …
• e.g. “enum colors { red, green, blue }”

• … before it is used to declare a variable: <type> <variable>;
• e.g. “enum colors paintColor;”

• Type definition and variable declaration may occur in the same 
statement: “enum colors { red, green, blue } paintColor;”

• If type is used only once, name is not required… “anonymous” type
• enum { up, down } elevator_motion;



Binghamton

University

CS-220

Spring 2016

What is a Structure?

• A method to collect a group of variables
• Treat the group as a single entity

• Enable access to each variable within the group

• Pass the whole group around

struct [<tag>] { <members> } [<instance>];

See also: 
https://en.wikipedia.org/wiki/Struct_(C_programming_language)

https://en.wikipedia.org/wiki/Struct_(C_programming_language)


Binghamton

University

CS-220

Spring 2016

Defining a Structure

struct point {

int x;

int y;

};

• Creates a new data type: “struct point”
• Two sub-fields: “x” and “y”, both integers

• Does NOT create any variables with this data type!

• Does NOT reserve any memory

tag

members



Binghamton

University

CS-220

Spring 2016

struct point vertex;

• Creates variable “vertex” of type “point”

• “point” must be defined previously

• Allocates memory for all sub-fields of vertex

• “vertex” has two sub-fields
• vertex.x

• vertex.y

Declaring a Structure

Label Address Value

…

vertex.y 0xc70C 0x0004

vertex.x 0xc708 0x0003

…

tag

instance

type



Binghamton

University

CS-220

Spring 2016

Example of an anonymous structure

struct {

int x;

int y;

} vertex;

• Creates variable “vertex” of type “anonymous struct”

• Allocates memory for all sub-fields of vertex

• “vertex” has two sub-fields
• vertex.x
• vertex.y

Label Address Value

…

vertex.y 0xa70C 0x0004

vertex.x 0xa708 0x0003

…

members

instance



Binghamton

University

CS-220

Spring 2016

Example definition and declaration

struct point {

int x;

int y;

} vertex;

• Creates a new data type: “struct point”

• Creates variable “vertex” of type “struct point”

• Allocates memory for all sub-fields of vertex

• New instances of type “struct point” can be created

Label Address Value

…

vertex.y 0x970C 0x0004

vertex.x 0x9708 0x0003

…
instance

tag

members



Binghamton

University

CS-220

Spring 2016

What can I do with a Structure?

struct point origin = {0,0};

struct point here;

struct point moveX(struct point from,int dist) {

from.x+=dist;

return from;

}

here=origin; 

here=moveX(point,3);

initialize

pass as argument

return

assign



Binghamton

University

CS-220

Spring 2016

Data Alignment

• Data alignment: the address of a variable should be divisible by the 
size of the variable

• char starts at an address divisible by 1

• short starts at an address divisible by 2

• int starts at an address divisible by 4

• …

• On most hardware, memory fetch occurs faster when data is 
aligned

• In most cases, compiler takes care of alignment for us

• See https://en.wikipedia.org/wiki/Data_structure_alignment

https://en.wikipedia.org/wiki/Data_structure_alignment


Binghamton

University

CS-220

Spring 2016

Structure Data Layout

• Typically, members of structures are in contiguous memory

• However, when data is aligned, compiler may insert padding

• Compiler may insert padding at the end to ensure entire structure 
is aligned



Binghamton

University

CS-220

Spring 2016

Structure Padding Example

How you code it

struct student {

char fist_init;

char * last_name;

short age;

int id;

char grade;

} class[80];

How it really is
struct student {

char first_init;

char pad1[3];

char * last_name;

short age;

char pad2[2];

int id;

char grade;

char pad3[3]

} class[80];

use sizeof(struct student) to determine how many bytes are needed



Binghamton

University

CS-220

Spring 2016

Structure Definition to avoid padding

How you code it

struct student {

char * last_name;

int id;

short age;

char fist_init;

char grade;

} class[80];

How it really is

struct student {

char * last_name;

int id;

short age;

char fist_init;

char grade;

} class[80];



Binghamton

University

CS-220

Spring 2016

Structure Pointers

struct xys { int x; int y}; // Create new type – struct xys

struct xys * vp = (struct xyx *)malloc(sizeof(struct xys));

vp->x=5;

vp->y=3;

• Note: sizeof(struct xys) returns total size of all sub-fields

• “vp” is a pointer to an xys structure

• Access to sub-fields using “->” arrow
• vp->x is shorthand for (*vp).x

Label Address Value

vp 0x7c04 0x7708

…

vp->y 0x770C 0x0003

vp->x 0x7708 0x0005

…



Binghamton

University

CS-220

Spring 2016

Self-referential Structures

struct dl_list {

struct dl_list * prev;

int value;

struct dl_list * next;

} root;

void insert(dl_list * node, dl_list *after) {

node->next=after->next;

node->next->prev=node;

node->prev=after;

after->next=node;

}

node

after



Binghamton

University

CS-220

Spring 2016

Handling NULL start/end of list

void insert(dl_list * node, dl_list *after) {

if (after==NULL) { // Insert before root

node->next=root;

root=node;

}

else node->next=after->next;

if (node->next!=NULL && node->next->prev!=NULL) 

node->next->prev=node;

node->prev=after;

if (after!=NULL) after->next=node;

}



Binghamton

University

CS-220

Spring 2016

Other data structures

How can we use self-referential structures to create:

• Circular singly linked lists

• Binary trees with left and right children

• Binary trees with left and right children and parent pointers

• Arbitrary graphs with N nodes and E edges



Binghamton

University

CS-220

Spring 2016

What is a Union

• Nearly a structure but

• Fields overlap (start at same memory location)

• Enable multiple types for the same data



Binghamton

University

CS-220

Spring 2016

Union as a Type

union flint {

float fx;

int ix;

};

• Creates a new data type: “union flint”

• Does NOT create any variables with this data type!

• Does NOT reserve any memory

tag

members



Binghamton

University

CS-220

Spring 2016

Example of Union: Test 1 “hexRep”

int hexRep(float x) {

union {

float xf;

int xi;

} in;

in.xf=x; // Copy float parameter to union as float

return in.xi; // Return value of union as an integer

}



Binghamton

University

CS-220

Spring 2016

Example of Union: Test 1 “hexRep”

int hexRep(float x) {

union {

float xf;

int xi;

} in;

in.xf=x; // Copy float parameter to union as float

return in.xi; // Return value of union as an integer

}

xC1980000

in.xf (float): -19

in.xi (int): -1,047,003,136



Binghamton

University

CS-220

Spring 2016

Example Union to show endian-ness

union {

int i;

unsigned char ic[4];

} iu;

iu.i=12;

printf(“Integer %d is %02x %02x %02x %02x\n”,

iu.i, iu.ic[0], iu.ic[1], iu.ic[2], iu.ic[3]);

/* Integer 12 is 0c 00 00 00 */

Label Address Value

iu.ic[3] 0xc003 0x00

iu.ic[2] 0xc002 0x00

iu.ic[1] 0xc001 0x00

iu.i, iu.ic[0] 0xc000 0x0c



Binghamton

University

CS-220

Spring 2016

What is an Enumeration (enum)?

• A data type characterized by a finite set of named elements

• A mapping from names to integers

enum [<tag>] { <memlist> } [<instname>];



Binghamton

University

CS-220

Spring 2016

enum example

enum scr_colors { red, green, blue, gray } fg_color=blue;

enum scr_colors bg_color;

bg_color=gray; 

if (fg_color==bg_color) printf(“Who turned off the lights?\n”);



Binghamton

University

CS-220

Spring 2016

enum under the covers

enum scr_colors { red, green, blue, gray } fg_color=blue;

• fg_color is a number

• The type of fg_color depends on how many different colors there are.. if there 
are less than 16 colors, fg_color is an unsigned char

• Compiler maps red->0, green->1, blue->2, gray->3

• Compiler limits values of type scr_colors to values : red, green, blue, or gray



Binghamton

University

CS-220

Spring 2016

C enum’s - concrete

// enum scr_colors { red, green, blue, gray } fg_color;

/* after type checking same as…*/

unsigned char fg_color;

#define red 0

#define green 1

#define blue 2

#define gray 3



Binghamton

University

CS-220

Spring 2016

Why enum?

• Type Checking!
• Compiler error if you say “fg_color=cyan;”

• Compiler error if you say “scr_color bg_color = fg_color * 3;”

• Makes code much more legible
• if (color==red) vs if (color==2)



Binghamton

University

CS-220

Spring 2016

What is a typedef?

• A new name for a type which is already defined

typedef <old_type> <new_type>



Binghamton

University

CS-220

Spring 2016

Example typedef

#include <stdbool.h>
typedef unsigned char[3] area_code;
area_code local={6,0,7};

bool ac_equal(area_code ac1, area_code ac2) {
if (ac1[0]!=ac2[0]) return false;
if (ac1[1]!=ac2[1]) return false;
if (ac1[2]!=ac2[2]) return false;
return true;

}



Binghamton

University

CS-220

Spring 2016

Combining typedef with structures

typedef struct { int x; int y; int z; } loc3d;

loc3d origin={0,0,0};

loc3d pos=origin;

pos.x=pos.x+3; // move 3 spaces forward

“existing type” : anonymous 
structure definition

“new type”


