Binghamton CS-220

University Spring 2016

User Defined Types in C

The C Programming Language: Chapter 6

Binghamton CS-220

University Spring 2016

Typesin C

* Built-in types: char, float, int, double, short, ...

* Modified types
* Arrays: char ___[5], int [3][7], ...
 Pointers:int*_, char* | ...

* User Named Type Extensions
e Structures
* Unions
* Enumerations

* User Defined Types - typedef

Binghamton CS-220

University Spring 2016

User Named Type Extensions

* Type consists of <keyword> <tag>
* e.g. “struct llnode” or “union data” or “enum colors”

* Type must be defined: <type> { <definition> } ...
* e.g. “enum colors { red, green, blue }"

* ... before it is used to declare a variable: <type> <variable>;
* e.g. “enum colors paintColor;”

* Type definition and variable declaration may occur in the same
statement: “enum colors { red, green, blue } paintColor;”

* If type is used only once, name is not required... “anonymous” type
* enum { up, down } elevator_motion;

Binghamton CS-220

University Spring 2016

What Is a Structure?

* A method to collect a group of variables
* Treat the group as a single entity
* Enable access to each variable within the group
* Pass the whole group around

struct [<tag>] { <members> } [<instance>];

See also:
https://en.wikipedia.org/wiki/Struct (C programming language)

https://en.wikipedia.org/wiki/Struct_(C_programming_language)

Binghamton CS-220

University Spring 2016

Defining a Structure

struct|point i @
Int X; m

inty;

 Creates a new data type: “struct point”

“o_.J)

* Two sub-fields: “x” and “y”, both integers
* Does NOT create any variables with this data type!
* Does NOT reserve any memory

Binghamton CS-220

University

Declaring a Structure type)
struct poinijerteX' @

T

* Creates variable “vertex” of type “point”
* “point” must be defined previously

* Allocates memory for all sub-fields of vertex
* “vertex” has two sub-fields

Spring 2016

* vertex.x
erte vertex.y Al [omm 0xX0004

°Vv X.

’ vertex.x 0xc708 0x0003

Binghamton CS-220

University Spring 2016

Example of an anonymous structure

struct {
Int X;
inty;

Hvertex| m

vertex.y Oxa70C R0
vertex.x 0xa708 0x0003

* Creates variable “vertex” of type “anonymous struct”
* Allocates memory for all sub-fields of vertex

e “vertex” has two sub-fields
* vertex.x
* vertex.y

Binghamton CS-220

University Spring 2016

Example definition and declaration
@

struct point[{

AR 1 cimbrs

_ = vertex.y 0x970C [0l
Inty, m

} vertex:

 Creates a new data type: “struct point”

vertex.x 0x9708 .00k

 Creates variable “vertex” of type “struct point”
* Allocates memory for all sub-fields of vertex
* New instances of type “struct point” can be created

Binghamton CS-220

University Spring 2016

What can | do with a Structure?

struct point origin = {0,0};~ M

struct point here;

struct point moveX(struct point from,int dist) {
from.x+=diw
return from;

} B .55

here=origin;

here=moveX(point,3);

Binghamton CS-220

University Spring 2016

Data Alignment

* Data alighment: the address of a variable should be divisible by the
size of the variable
* char starts at an address divisible by 1
* short starts at an address divisible by 2
* int starts at an address divisible by 4

* On most hardware, memory fetch occurs faster when data is
aligned

* In most cases, compiler takes care of alignment for us

* See https://en.wikipedia.org/wiki/Data structure alignment

https://en.wikipedia.org/wiki/Data_structure_alignment

Binghamton CS-220

University Spring 2016

Structure Data Layout

* Typically, members of structures are in contiguous memory
* However, when data is aligned, compiler may insert padding

* Compiler may insert padding at the end to ensure entire structure
is aligned

Binghamton CS-220

University Spring 2016

Structure Padding Example

How you code it How it really is
struct student { struct student {

. . char first_init;
char fist_init; char pad1[3]
char * last_name; char * last_name;

. short age;
short age, char pad2[2];
int id; int id;
char grade: char grade;

char pad3[3]
} class[80]; } class[80];

use sizeof(struct student) to determine how many bytes are needed

Binghamton CS-220

University Spring 2016

Structure Definition to avoid padding

How you code it How it really is

struct student { struct student {
char * last_name; char * last_name;
int id; int id;
short age; short age;
char fist_init; char fist_init;
char grade; char grade;

} class[80]; } class[80];

Binghamton CS-220

University Spring 2016

Structure Pointers

struct xys { int x; inty}; // Create new type - struct xys

struct xys * vp = (struct xyx *)malloc(sizeof(struct xys));

vp->X=5;

vp->y=3;

* Note: sizeof(struct xys) returns total size of all sub-fields

* “vp” is a pointer to an xys structure
* Access to sub-fields using “->" arrow vp UYZR 0x7708

e vp->Xx is shorthand for (*vp).x
vp->y 0x770C FLOLCIIE]

Vp->X 0x7708 ALK

Binghamton CS-220

University Spring 2016

Self-referential Structures

struct dl_list { void insert(dl_list * node, dI_list *after) {
struct dI_list * prev; node->next=after->next;
int value: node->next->prev=node;
. node->prev=after;
struct di_list * next;
after->next=node;
} root; \

L/i after

node

Binghamton CS-220

University Spring 2016

Handling NULL start/end of list

void insert(dl_list * node, dI_list *after) {

if (after==NULL) { // Insert before root
node->next=root;
root=node;

}

else node->next=after->next;

if (node->next!=NULL && node->next->prev!=NULL)
node->next->prev=node;

node->prev=after;

if (after!=NULL) after->next=node;

Binghamton CS-220

University Spring 2016

Other data structures

How can we use self-referential structures to create:

* Circular singly linked lists

* Binary trees with left and right children

* Binary trees with left and right children and parent pointers

* Arbitrary graphs with N nodes and E edges

Binghamton CS-220

University Spring 2016

What I1s a Union

* Nearly a structure but
* Fields overlap (start at same memory location)
* Enable multiple types for the same data

Binghamton CS-220

University Spring 2016

Union as a Type

union|flint/{ @
float fx; M

Int 1X;

* Creates a new data type: “union flint”
* Does NOT create any variables with this data type!
* Does NOT reserve any memory

Binghamton CS-220

University Spring 2016

Example of Union: Test 1 "hexRep”

int hexRep(float x) {

union {
float xf;
Int XIi;
}in;

in.xf=x; // Copy float parameter to union as float
return in.xi; // Return value of union as an integer

Binghamton CS-220

University Spring 2016

Example of Union: Test 1 "hexRep”

in.xf (float): -19
int hexRep(float x) {

union {
float xf: xC1980000
Int Xi;

bin: in.xi (int): -1,047,003,136

in.xf=x; // Copy float parameter to union as float
return in.xi; // Return value of union as an integer

Binghamton

CS-220

University

Example Union to show endian-ness

union { iu.ic[3] 0xc003
Int I; iwic[2] 0xc002
unsigned char ic[4]; uicl1] 0xc001
] iui, iwic[0] 0xc000
}iu;
iu.i=12;

printf(“Integer %d is %02x %02x %02x %02x\n",
iu.i, iu.ic[0], iu.ic[1], iu.ic[2], iu.ic[3]);
/* Integer 12 is Oc 00 00 00 */

Spring 2016

Binghamton CS-220

University Spring 2016

What iIs an Enumeration (enum)?

* A data type characterized by a finite set of named elements
* A mapping from names to integers

enum [<tag>] { <memlist> } [<insthame>];

Binghamton CS-220

University Spring 2016

enum example

enum scr_colors { red, green, blue, gray } fg_color=blue;
enum scr_colors bg_color;
bg_color=gray;

if (fg_color==bg_color) printf(“Who turned off the lights?\n”);

Binghamton CS-220

University Spring 2016

enum under the covers

enum scr_colors { red, green, blue, gray } fg_color=blue;

* fg_color is a number

* The type of fg_color depends on how many different colors there are.. if there
are less than 16 colors, fg_color is an unsigned char

* Compiler maps red->0, green->1, blue->2, gray->3

* Compiler limits values of type scr_colors to values : red, green, blue, or gray

Binghamton CS-220

University

Spring 2016

C enum’s - concrete

// enum scr_colors { red, green, blue, gray } fg_color;
/* after type checking same as...*/

unsigned char fg_color;

#define red O

#define green 1

#define blue 2

#define gray 3

Binghamton CS-220

University Soring 2016

Why enum?

* Type Checking!
* Compiler error if you say “fg_color=cyan;"
* Compiler error if you say “scr_color bg_color = fg_color * 3;”

* Makes code much more legible
* if (color==red) vs if (color==2)

Binghamton CS-220

University Spring 2016

What Is a typedef?

* A new name for a type which is already defined

typedef <old_type> <new_type>

Binghamton CS-220

University

Example typedef

Spring 2016

#include <stdbool.h>

typedef unsigned char[3] area_code;
area_code local={6,0,7};

bool ac_equal(area_code acl, area_code ac?2) {
if (ac1[0]!=ac2[0]) return false;
if (ac1[1]'=ac2[1]) return false;
if (ac1[2]!=ac2[2]) return false;
return true;

Binghamton CS-220

University Spring 2016

Combining typedef with structures

typedef{struct{ int x; inty; int z; } Ioc3d;w

oc3d origin={0,0,0}; “existing type” : anonymous
oc3d pos=origin; structure definition
00S.X=po0s.X+3; // move 3 spaces forward

